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1 The finite region enclosed by the lie= kx, wherek is a positive constant, theaxis for 0< x < h,
and the linex = his rotated through 1 complete revolution aboutxkexis. Prove by integration that
the centroid of the resulting cone is at a distafiiloérom the originO. [4]

[The volume of a cone of heigitand base radiusis $7r°h.]

2 Given that
1+XI’1+1
4, =in(22X0),
n 1+x"
N

wherex > -1, find Z u_ interms ofN andx. [3]
n=1

Find the sum to infinity of the series

U1+U2+U3+

when
(i) -1<x<1, [1]
(i) x=1. [1]

3 Show thatifA is an eigenvalue of the square matxvith e as a corresponding eigenvector, anid
an eigenvalue of the square mati@xor whicheis also a corresponding eigenvector, thenu is an

eigenvalue of the matriA + B with e as a corresponding eigenvector. [2]
The matrix
3 -1 O
A= (—4 -6 —6)
5 11 10
1
has ( —l) as an eigenvector. Find the corresponding eigenvalue. [1]
1

1 1
The other two eigenvalues & are 1 and 2, with corresponding eigenvect{rsz) and ( 1)
-3 -2

1 1
respectively. The matriB has eigenvalues 2, 3, 1 with corresponding eigenvec(ters) , ( 2),
1 -3

1
( 1) respectively. Find a matriR and a diagonal matri® such thaiA + B)* = PDPL. [3]
-2

[You are not required to evaluaks®.]
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4 The curvesC, andC, have polar equations

r=0+2 and r=6?

respectively, where @ 6 < 7.

(1) Find the polar coordinates of the point of intersectioiCofandC,,. [2]
(i) SketchC, andC, on the same diagram. [2]
(iii) Find the area bounded I§y,, C, and the lined = 0. [3]

5 The equation
XX +x-1=0

has rootsx, 8, y. Show that the equation with roats, g3, y3 is

Y —3y?+4y—1=0. [4]
Hence find the value a® + 8 + ®. [3]
6 The curveC is defined parametrically by

X=4t—t> and y=1-¢€t,

where 0< t < 2. Show that at all points dF,

dy (t-1e" (4]
@  4(2-1)3"
2
Show that the mean value %fx%/ with respect toc over the interval & x < Lzl is
467 -3
e 2

7  Prove by induction that

n
2(3r°+r%) = 3n’(n+ 1%,
r=1

foralln> 1. [5]

Use this result together with the List of Formulae (MF10) toye that
n
> r°=Ln?(n+1)%Q(n),
r=1

where @n) is a quadratic function af which is to be determined. [3]
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11

(i) Given that

show that, fom > 2,

| = n(g)n_l—n(n—l)ln_z. [5]

(ii) A curveC inthex-y plane is defined parametrically in termstoft is given that

& _ t*(1-cos2) and Y _ ina,
dt t
Find the length of the arc & from the point wheré = O to the point wheré = %n [5]
The curveC has equation
CXE—2x+ A
o ox+1 7
whereA is a constant. Show that the equations of the asymptot€sané independent df. [3]
Find the value ofA for which thex-axis is a tangent t&€, and sketclC in this case. [4]

SketchC in the casel = —4, giving the exact coordinates of the points of intersectbC with the

x-axis. [3]
N .
By considering) 22", wherez = €°, show that
n=1
i cog2n-1)0 = W
- - 2sing ’
n-1
where sirg # 0. [6]
Deduce that
N
[@n-D)r T
- =) _ _ T 4
nzz:l(Zn 1) sm[ N N cosecy [4]

Show that, with a suitable value of the constanthe substitutiory = x*w reduces the differential
equation

dy a2 oo 0y _
2%@ +(3 B+ (¢ + 6x+ 4)y = f(X)

to
d°w _dw
2@4‘3& +W—f(X) [5]
Find the general solution forin the case whergx) = 6 sin 2+ 7 cos X. [6]

© UCLES 2008 9231/01/M/J/08



5
12 Answer onlyone of the following two alternatives.
EITHER

The position vectors of the poings B, C, D are
7i+4j -k, 3i + 5] — 2k, 2i + 6j + 3k, 20 + 7] + Ak

respectively. It is given that the shortest distance betviiee lineAB and the lineCD is 3.

(i) Show that\®>-51 +4=0. [7]
(ii) Find the acute angle between the planes throAgtB, D corresponding to the values af
satisfying the equation in pafi). [7]

OR

The linear transformation TR* — R* is represented by the matrix

1 2 -1 -1
1 3 -1 O
1 0 3 1
0 3 -4 -1
The range space of T is denoted\dy
(i) Determine the dimension &f. [3]
1 2 -1
. 1 3 -1 . .
(ii) Show that the vector 1 1ol 5 | are linearly independent. [4]
0 3 -4
(iii) Write down a basis oY¥. [1]

The set of elements &* which do not belong t&/ is denoted byw.

(iv) State, with a reason, whethéf is a vector space. [1]
X
(v) Show that if the vecto 32/ belongs tdN theny —z —t # 0. [5]

t
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