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1 The finite region enclosed by the liney = kx, wherek is a positive constant, thex-axis for 0≤ x ≤ h,
and the linex = h is rotated through 1 complete revolution about thex-axis. Prove by integration that
the centroid of the resulting cone is at a distance3

4
h from the originO. [4]

[The volume of a cone of heighth and base radiusr is 1
3
πr2h.]

2 Given that

un = ln(1+ xn+1

1+ xn ),

wherex > −1, find
N

∑
n=1

un in terms ofN andx. [3]

Find the sum to infinity of the series

u
1
+ u

2
+ u

3
+ . . .

when

(i) −1 < x < 1, [1]

(ii) x = 1. [1]

3 Show that ifλ is an eigenvalue of the square matrixA with e as a corresponding eigenvector, andµ is
an eigenvalue of the square matrixB for whiche is also a corresponding eigenvector, thenλ + µ is an
eigenvalue of the matrixA + B with e as a corresponding eigenvector. [2]

The matrix

A = ( 3 −1 0
−4 −6 −6

5 11 10
)

has( 1
−1

1
) as an eigenvector. Find the corresponding eigenvalue. [1]

The other two eigenvalues ofA are 1 and 2, with corresponding eigenvectors( 1
2

−3
) and( 1

1
−2

)
respectively. The matrixB has eigenvalues 2, 3, 1 with corresponding eigenvectors( 1

−1
1

), ( 1
2

−3
),

( 1
1

−2
) respectively. Find a matrixP and a diagonal matrixD such that(A + B)4 = PDP−1. [3]

[You are not required to evaluateP−1.]
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4 The curvesC
1

andC
2

have polar equations

r = θ + 2 and r = θ2

respectively, where 0≤ θ ≤ π.

(i) Find the polar coordinates of the point of intersection ofC1 andC2. [2]

(ii) SketchC1 andC2 on the same diagram. [2]

(iii) Find the area bounded byC1, C2 and the lineθ = 0. [3]

5 The equation

x3 + x − 1 = 0

has rootsα, β, γ . Show that the equation with rootsα3, β3, γ 3 is

y3 − 3y2 + 4y − 1 = 0. [4]

Hence find the value ofα6 + β6 + γ 6. [3]

6 The curveC is defined parametrically by

x = 4t − t2 and y = 1− e−t,

where 0≤ t < 2. Show that at all points ofC,

d2y

dx2
= (t − 1)e−t

4(2− t)3
. [4]

Show that the mean value of
d2y

dx2
with respect tox over the interval 0≤ x ≤ 7

4
is

4e
−1

2 − 3
21

. [4]

7 Prove by induction that
n

∑
r=1

(3r5 + r3) = 1
2
n3(n + 1)3,

for all n ≥ 1. [5]

Use this result together with the List of Formulae (MF10) to prove that

n

∑
r=1

r5 = 1
12

n2(n + 1)2Q(n),

where Q(n) is a quadratic function ofn which is to be determined. [3]
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8 (i) Given that

I
n
= �

1
2
π

0
tn sint dt,

show that, forn ≥ 2,

In = n(π

2
)n−1 − n(n − 1)In−2. [5]

(ii) A curveC in thex-y plane is defined parametrically in terms oft. It is given that

dx
dt

= t4(1− cos 2t) and
dy
dt

= t4 sin 2t.

Find the length of the arc ofC from the point wheret = 0 to the point wheret = 1
2
π. [5]

9 The curveC has equation

y = x2 − 2x + λ

x + 1
,

whereλ is a constant. Show that the equations of the asymptotes ofC are independent ofλ . [3]

Find the value ofλ for which thex-axis is a tangent toC, and sketchC in this case. [4]

SketchC in the caseλ = −4, giving the exact coordinates of the points of intersection of C with the
x-axis. [3]

10 By considering
N

∑
n=1

�2n−1, where� = eiθ , show that

N

∑
n=1

cos(2n − 1)θ = sin(2Nθ)
2 sinθ

,

where sinθ ≠ 0. [6]

Deduce that
N

∑
n=1

(2n − 1) sin[(2n − 1)π
N

] = −N cosec
π

N
. [4]

11 Show that, with a suitable value of the constantα, the substitutiony = xαw reduces the differential
equation

2x2d2y

dx2
+ (3x2 + 8x)dy

dx
+ (x2 + 6x + 4)y = f(x)

to

2
d2w

dx2
+ 3

dw
dx

+ w = f(x). [5]

Find the general solution fory in the case where f(x) = 6 sin 2x + 7 cos 2x. [6]
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12 Answer onlyone of the following two alternatives.

EITHER

The position vectors of the pointsA, B, C, D are

7i + 4j − k, 3i + 5j − 2k, 2i + 6j + 3k, 2i + 7j + λk

respectively. It is given that the shortest distance between the lineAB and the lineCD is 3.

(i) Show thatλ 2 − 5λ + 4 = 0. [7]

(ii) Find the acute angle between the planes throughA, B, D corresponding to the values ofλ
satisfying the equation in part(i). [7]

OR

The linear transformation T :�4 → �4 is represented by the matrix

⎛⎜⎜⎝
1 2 −1 −1
1 3 −1 0
1 0 3 1
0 3 −4 −1

⎞⎟⎟⎠ .

The range space of T is denoted byV.

(i) Determine the dimension ofV. [3]

(ii) Show that the vectors
⎛⎜⎜⎝

1
1
1
0

⎞⎟⎟⎠,
⎛⎜⎜⎝

2
3
0
3

⎞⎟⎟⎠,
⎛⎜⎜⎝
−1
−1

3
−4

⎞⎟⎟⎠ are linearly independent. [4]

(iii) Write down a basis ofV. [1]

The set of elements of�4 which do not belong toV is denoted byW.

(iv) State, with a reason, whetherW is a vector space. [1]

(v) Show that if the vector
⎛⎜⎜⎝

x
y
�
t

⎞⎟⎟⎠ belongs toW theny − � − t ≠ 0. [5]
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